30.09.2020   13:00

IZN Seminar

 

Conditional knockout mice lacking all three APP family members show cognitive deficits and ASD-like behavior

Vicky Steubler (AG Müller)

 

Whole-body integration of gene expression and single-cell morphology

Hernando Martinez Vergara (AG Arendt)

 

Location: online

Access code shared on the IZN Mailing Lists

Click 'Sign in via Uni-ID' at the top of the page and then enter the access code.

Or 'Enter the room's access code' <Enter> and then 'Enter your name' <Join>.

 

Welcome to the IZN Home Page

Selected cells
 
Kuner T Fig1
 
Pauen Fig1
 
Poggi Figure2
 
Rappold Fig1
 
Holstein Fig1

News...

Gene defect influences tumor development in childhood brain tumors

Medulloblastoma are the most common malignant brain tumors affecting children. The greatest danger is that the cancer cells can quickly spread to the surrounding tissues. Two genetic defects play a key role in the onset of these tumors, as scientists at the Hopp Children's Cancer Center Heidelberg (KiTZ), the German Cancer Research Center (DKFZ) and the National Institute of Neuroscience in Tokyo have discovered. The aim is for the findings to help scientists develop personalized treatment strategies for young patients.

At the Hopp Children's Cancer Center Heidelberg (KiTZ), scientists are conducting intensive research into the onset of medulloblastoma in order to develop new therapy options. "The onset of malignant medulloblastoma cells has genetic causes and follows several stages," explains Lena Kutscher, a Junior Group Leader at the KiTZ and the DKFZ. "First, genetic mutations cause excessive proliferation of certain precursor nerve cells, and growths develop. If more mutations occur, they can turn into malignant tumor cells that spread into the surrounding tissue."

Together with colleagues from the National Institute of Neuroscience in Tokyo and from St. Jude Children's Hospital in the USA, the research team came across two key genetic drivers for the onset of medulloblastoma in the Sonic Hedgehog medulloblastoma subgroup (SHH). The BCOR gene is regarded as a tumor suppressor gene, and its protein product normally suppresses the uncontrolled division of cells with genetic defects, thereby preventing the onset of tumors. Earlier studies have shown that in eight percent of young SHH patients, BCOR is mutated or has been partially deleted from the genome. Boys are particularly affected by this mutation. More...


Chs Logo2016 Cmyk Pfade English2

Oliveira AnaThe Chica and Heinz Schaller Foundation is proud to announce a CHS Research Awards winner 2020: Dr. Ana Oliveira


Heidelberg researchers investigate new approaches to treating neurodegenerative diseases

Bading2MauceripicProtecting nerve cells from losing their characteristic extensions, the dendrites, can reduce brain damage after a stroke. Neurobiologists from Heidelberg University have demonstrated this by means of research on a mouse model. The team, led by Prof.Dr. Hilmar Bading in cooperation with Junior Professor Dr. Daniela Mauceri, is investigating the protection of neuronal architecture to develop new approaches to treating neurodegenerative diseases. The current research findings were published in the journal “Proceedings of the National Academy of Sciences”.

Brain nerve cells possess many arborised dendrites, which can make connections with other neurons. The highly complex, ramified structure of neurons is an important precondition for their ability to connect with other nerve cells, in order to enable the brain to function normally. In earlier studies, the Heidelberg researchers identified the signal molecule VEGFD – Vascular Endothelial Growth Factor D – as a central regulator for maintaining and restoring neuronal structures. “Our current research results demonstrate that a stroke as a consequence of an interruption of the blood supply to the brain leads to a reduction of VEGFD levels. That causes the nerve cells to lose part of their dendrites. They shrink and this leads to impairments of the cognitive and motor abilities,” explains Prof. Bading.

Based on these findings, the researchers at the Interdisciplinary Centre for Neurosciences explored the question of whether the reduction of neuronal structures after a stroke can be prevented by restoring the VEGFD levels. More...


SchuetzZum Tod von Günther Schütz, IZN Alumnus

Das Deutsche Krebsforschungszentrum trauert um Günther Schütz, einen großen Wissenschaftler und hoch angesehen ehemaligen Kollegen, der am 28. Mai im Alter von 80 Jahren verstorben ist. Mehr...


Seitenanfang

Open positions at the IZN

  • A postdoc/scientific assistant position is offered in the Research Group 'General Neurophysiology' (Prof. Dr. Oliver Kann) at the Institute of Physiology and Pathophysiology, University of Heidelberg. The group focuses on (i) mitochondria and energy metabolism during neuronal activity, and (ii) the impact of activated microglia (brain macrophages) on neuronal activity and neurodegeneration. Adobe
    Posted 07.2020

  • Two positions for postdoctoral or doctoral researchers in the department of Functional Neuroanatomy (Prof T. Kuner) are available in a consortium which aims to visualize multi-protein networks in nervous tissue with near-molecular optical resolution. Adobe
    Posted 02.2020

  • The research group of Dr. Kevin Allen is seeking a highly motivated PhD student to work on the neuronal basis of spatial behavior. The student will use a wide array of techniques to study system neuroscience, including in vivo tetrode and silicon probe recordings in mice, optogenetics, behavioral testing, analysis of large databases and histological analysis. Adobe
    Posted 11.2019


Seitenanfang

Contact

 

Managing Director:
Prof. Dr. Hilmar Bading
IZN-Neurobiology, University of Heidelberg
Im Neuenheimer Feld 366, 1.OG
D-69120 Heidelberg, Germany

 

Phone:  +49 - 6221 - 54 16500
Fax:  +49 - 6221 - 54 16524
email:  Bading@nbio.uni-heidelberg.de

 

 

 

Coordinator IZN and IZN PhD Programme:
Dr. Otto Bräunling
IZN-Neurobiology, University of Heidelberg
Im Neuenheimer Feld 366, 1.OG
D-69120 Heidelberg, Germany

 

Phone:  +49 - 6221 - 54 16502
Fax:  +49 - 6221 - 54 16524
email:  Braeunling@nbio.uni-heidelberg.de

 

 

 

Administration & Information:
Herr Ferhat Dikmen
IZN-Neurobiology, University of Heidelberg
Im Neuenheimer Feld 366, 1.OG
D-69120 Heidelberg, Germany

 

Phone:  +49 - 6221 - 54 16501
Fax:  +49 - 6221 - 54 16524
email:  Sekretariat@nbio.uni-heidelberg.de

 

Webmaster contact: WebmasterIZN@uni-heidelberg.de
Latest Revision: 2020-09-17
zum Seitenanfang/up